Lesson 7: Structures
 

Before discussing classes, this lesson will be an introduction to data structures similar to classes. Structures are a way of storing many different values in variables of potentially different types under the same name. This makes it a more modular program, which is easier to modify because its design makes things more compact. Structs are generally useful whenever a lot of data needs to be grouped together--for instance, they can be used to hold records from a database or to store information about contacts in an address book. In the contacts example, a struct could be used that would hold all of the information about a single contact--name, address, phone number, and so forth. 


The format for defining a structure is
 
struct Tag {
  Members
};
Where Tag is the name of the entire type of structure and Members are the variables within the struct. To actually create a single structure the syntax is
 
struct Tag name_of_single_structure;
To access a variable of the structure it goes
 
name_of_single_structure.name_of_variable;
For example:
 
struct example {
  int x;
};
struct example an_example; //Treating it like a normal variable type
an_example.x = 33;  //How to access it's members
Here is an example program:
 
struct database {
  int id_number;
  int age;
  float salary;
};

int main()
{
  database employee;  //There is now an employee variable that has modifiable 
                      // variables inside it.
  employee.age = 22;
  employee.id_number = 1;
  employee.salary = 12000.21;
}
The struct database declares that database has three variables in it, age, id_number, and salary. You can use database like a variable type like int. You can create an employee with the database type as I did above. Then, to modify it you call everything with the 'employee.' in front of it. You can also return structures from functions by defining their return type as a structure type. For instance:
 
database fn();
I will talk only a little bit about unions as well. Unions are like structures except that all the variables share the same memory. When a union is declared the compiler allocates enough memory for the largest data-type in the union. It's like a giant storage chest where you can store one large item, or a small item, but never the both at the same time. 

The '.' operator is used to access different variables inside a union also. 

As a final note, if you wish to have a pointer to a structure, to actually access the information stored inside the structure that is pointed to, you use the -> operator in place of the . operator. All points about pointers still apply. 

A quick example:
 
#include <iostream>

using namespace std;

struct xampl {
  int x;
};

int main()
{  
  xampl structure;
  xampl *ptr;
  
  structure.x = 12;
  ptr = &structure; // Yes, you need the & when dealing with structures
                    //  and using pointers to them
  cout<< ptr->x;    // The -> acts somewhat like the * when used with pointers
                    //  It says, get whatever is at that memory address
                    //  Not "get what that memory address is"
  cin.get();                    
}


Previous: Pointers
Next: Arrays 
Tutorial index


'프로그래밍 > C, C++' 카테고리의 다른 글

레슨 9: C Strings  (0) 2011.06.07
레슨 8: Array basics  (0) 2011.06.07
레슨 6: An introduction to pointers  (0) 2011.06.07
레슨 5: switch case in C and C++  (0) 2011.06.07
레슨 4: Functions  (0) 2011.06.07



Lesson 5: switch case in C and C++


Switch case statements are a substitute for long if statements that compare a variable to several "integral" values ("integral" values are simply values that can be expressed as an integer, such as the value of a char). The basic format for using switch case is outlined below. The value of the variable given into switch is compared to the value following each of the cases, and when one value matches the value of the variable, the computer continues executing the program from that point.
 
switch ( <variable> ) {
case this-value:
  Code to execute if <variable> == this-value
  break;
case that-value:
  Code to execute if <variable> == that-value
  break;
...
default:
  Code to execute if <variable> does not equal the value following any of the cases
  break;
}


The condition of a switch statement is a value. The case says that if it has the value of whatever is after that case then do whatever follows the colon. The break is used to break out of the case statements. Break is a keyword that breaks out of the code block, usually surrounded by braces, which it is in. In this case, break prevents the program from falling through and executing the code in all the other case statements. An important thing to note about the switch statement is that the case values may only be constant integral expressions. Sadly, it isn't legal to use case like this:
 
int a = 10;
int b = 10;
int c = 20;

switch ( a ) {
case b:
  // Code
  break;
case c:
  // Code
  break;
default:
  // Code
  break;
}
The default case is optional, but it is wise to include it as it handles any unexpected cases. Switch statements serves as a simple way to write long if statements when the requirements are met. Often it can be used to process input from a user. 

Below is a sample program, in which not all of the proper functions are actually declared, but which shows how one would use switch in a program.
 
#include <iostream>

using namespace std;

void playgame()
{
    cout << "Play game called";
}
void loadgame()
{
    cout << "Load game called";
}
void playmultiplayer()
{
    cout << "Play multiplayer game called";
}
	
int main()
{
  int input;
  
  cout<<"1. Play game\n";
  cout<<"2. Load game\n";
  cout<<"3. Play multiplayer\n";
  cout<<"4. Exit\n";
  cout<<"Selection: ";
  cin>> input;
  switch ( input ) {
  case 1:            // Note the colon, not a semicolon
    playgame();
    break;
  case 2:            // Note the colon, not a semicolon
    loadgame();
    break;
  case 3:            // Note the colon, not a semicolon
    playmultiplayer();
    break;
  case 4:            // Note the colon, not a semicolon
    cout<<"Thank you for playing!\n";
    break;
  default:            // Note the colon, not a semicolon
    cout<<"Error, bad input, quitting\n";
    break;
  }
  cin.get();
}
This program will compile, but cannot be run until the undefined functions are given bodies, but it serves as a model (albeit simple) for processing input. If you do not understand this then try mentally putting in if statements for the case statements. Default simply skips out of the switch case construction and allows the program to terminate naturally. If you do not like that, then you can make a loop around the whole thing to have it wait for valid input. You could easily make a few small functions if you wish to test the code. 


Previous: Functions
Next: Pointers 
Back to the tutorial index

'프로그래밍 > C, C++' 카테고리의 다른 글

레슨 7: Structures  (0) 2011.06.07
레슨 6: An introduction to pointers  (0) 2011.06.07
레슨 4: Functions  (0) 2011.06.07
레슨 3: Loops  (0) 2011.06.07
레슨 2 : If statements (if,else문)  (0) 2011.06.07





Lesson 4: Functions


Now that you should have learned about variables, loops, and conditional statements it is time to learn about functions. You should have an idea of their uses as we have already used them and defined one in the guise of main. cin.get() is an example of a function. In general, functions are blocks of code that perform a number of pre-defined commands to accomplish something productive. 


Functions that a programmer writes will generally require a prototype. Just like a blueprint, the prototype tells the compiler what the function will return, what the function will be called, as well as what arguments the function can be passed. When I say that the function returns a value, I mean that the function can be used in the same manner as a variable would be. For example, a variable can be set equal to a function that returns a value between zero and four. 

For example:
 
#include <cstdlib>   // Include rand()

using namespace std; // Make rand() visible

int a = rand(); // rand is a standard function that all compilers have
Do not think that 'a' will change at random, it will be set to the value returned when the function is called, but it will not change again. 

The general format for a prototype is simple:
 
return-type function_name ( arg_type arg1, ..., arg_type argN ); 
arg_type just means the type for each argument -- for instance, an int, a float, or a char. It's exactly the same thing as what you would put if you were declaring a variable.

There can be more than one argument passed to a function or none at all (where the parentheses are empty), and it does not have to return a value. Functions that do not return values have a return type of void. Let's look at a function prototype:
 
int mult ( int x, int y );
This prototype specifies that the function mult will accept two arguments, both integers, and that it will return an integer. Do not forget the trailing semi-colon. Without it, the compiler will probably think that you are trying to write the actual definition of the function. 

When the programmer actually defines the function, it will begin with the prototype, minus the semi-colon. Then there should always be a block with the code that the function is to execute, just as you would write it for the main function. Any of the arguments passed to the function can be used as if they were declared in the block. Finally, end it all with a cherry and a closing brace. Okay, maybe not a cherry. 

Let's look at an example program:
 
#include <iostream>

using namespace std;

int mult ( int x, int y );

int main()
{
  int x;
  int y;
  
  cout<<"Please input two numbers to be multiplied: ";
  cin>> x >> y;
  cin.ignore();
  cout<<"The product of your two numbers is "<< mult ( x, y ) <<"\n";
  cin.get();
}

int mult ( int x, int y )
{
  return x * y;
}
This program begins with the only necessary include file and a directive to make the std namespace visible. Everything in the standard headers is inside of the std namespace and not visible to our programs unless we make them so. Next is the prototype of the function. Notice that it has the final semi-colon! The main function returns an integer, which you should always have to conform to the standard. You should not have trouble understanding the input and output functions. It is fine to use cin to input to variables as the program does. But when typing in the numbers, be sure to separate them by a space so that cin can tell them apart and put them in the right variables. 

Notice how cout actually outputs what appears to be the mult function. What is really happening is cout is printing the value returned by mult, not mult itself. The result would be the same as if we had use this print instead
 
cout<<"The product of your two numbers is "<< x * y <<"\n";
The mult function is actually defined below main. Due to its prototype being above main, the compiler still recognizes it as being defined, and so the compiler will not give an error about mult being undefined. As long as the prototype is present, a function can be used even if there is no definition. However, the code cannot be run without a definition even though it will compile. The prototype and definition can be combined into one also. If mult were defined before it is used, we could do away with the prototype because the definition can act as a prototype as well. 

Return is the keyword used to force the function to return a value. Note that it is possible to have a function that returns no value. If a function returns void, the return statement is valid, but only if it does not have an expression. In other words, for a function that returns void, the statement "return;" is legal, but redundant. 

The most important functional (Pun semi-intended) question is why do we need a function? Functions have many uses. For example, a programmer may have a block of code that he has repeated forty times throughout the program. A function to execute that code would save a great deal of space, and it would also make the program more readable. Also, having only one copy of the code makes it easier to make changes. Would you rather make forty little changes scattered all throughout a potentially large program, or one change to the function body? So would I. 

Another reason for functions is to break down a complex program into logical parts. For example, take a menu program that runs complex code when a menu choice is selected. The program would probably best be served by making functions for each of the actual menu choices, and then breaking down the complex tasks into smaller, more manageable tasks, which could be in their own functions. In this way, a program can be designed that makes sense when read. And has a structure that is easier to understand quickly. The worst programs usually only have the required function, main, and fill it with pages of jumbled code. 

Previous: Loops
Next: Switch/case 
Back to the tutorial index

+ Recent posts